Statistics API for Chinese Taipei

Access real-time Chinese Taipei statistics and integrate data from Chinese Taipei directly into your products.

Data from trusted sources

Eurostat
World Bank Data
OECD
UN Data
IMF

Access Chinese Taipei statistics via API

Query thousands of datasets for Chinese Taipei across industries, sectors, and timeframes — all available via API.

Economic Indicators
Population Statistics
Trade & Commerce
Environmental Data
Health & Education
Technology & Innovation
Energy & Resources
Social Development
Financial Markets
Climate & Weather

Stream live Chinese Taipei data anywhere

Keep your products always current with Chinese Taipei statistics that update automatically.

Industry Revenue
Market Demand
Trade Volume
Inflation
Sep 20252.3%
Oct 20252.8%
Nov 20253.1%
Dec 20252.9%
Jan 20262.8%

Explore datasets for Chinese Taipei

Query thousands of Chinese Taipei statistics via Monitly API

GET/api/datasets?country=TWN&limit=100
{
  "data": [
    {
      "id": 6762,
      "dataset_name": "Account (% age 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6763,
      "dataset_name": "Account, female (% age 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6764,
      "dataset_name": "Account, urban (% age 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6765,
      "dataset_name": "Account, out of labor force (% age 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6766,
      "dataset_name": "Account, in labor force (% age 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6767,
      "dataset_name": "Account, male (% age 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6768,
      "dataset_name": "Account, young (% ages 15-24)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6769,
      "dataset_name": "Account, older (% age 25+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6770,
      "dataset_name": "Account, primary education or less (% ages 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6771,
      "dataset_name": "Account, secondary education or more (% ages 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6772,
      "dataset_name": "Account, income, poorest 40% (% ages 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6773,
      "dataset_name": "Account, income, richest 60% (% ages 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 6774,
      "dataset_name": "Account, rural (% age 15+)",
      "last_update": "2025-07-31"
    },
    {
      "id": 8189,
      "dataset_name": "Core CPI,not seas.adj,,,",
      "last_update": "2025-11-13"
    },
    {
      "id": 8190,
      "dataset_name": "Core CPI,seas.adj,,,",
      "last_update": "2025-11-13"
    },
    {
      "id": 8191,
      "dataset_name": "CPI Price, nominal",
      "last_update": "2025-11-13"
    },
    {
      "id": 8192,
      "dataset_name": "CPI Price, % y-o-y, median weighted, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 8193,
      "dataset_name": "CPI Price, nominal, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 8194,
      "dataset_name": "CPI Price, % y-o-y, nominal, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 8233,
      "dataset_name": "Imports Merchandise, Customs, current US$, millions",
      "last_update": "2025-11-13"
    },
    {
      "id": 8234,
      "dataset_name": "Imports Merchandise, Customs, constant US$, millions",
      "last_update": "2025-11-13"
    },
    {
      "id": 8236,
      "dataset_name": "Imports Merchandise, Customs, current US$, millions, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 8237,
      "dataset_name": "Imports Merchandise, Customs, constant US$, millions, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 8238,
      "dataset_name": "Imports Merchandise, Customs, Price, US$, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 8803,
      "dataset_name": "Official exchange rate, LCU per USD, period average",
      "last_update": "2025-11-13"
    },
    {
      "id": 8804,
      "dataset_name": "Exchange rate, new LCU per USD extended backward, period average",
      "last_update": "2025-11-13"
    },
    {
      "id": 8805,
      "dataset_name": "Exchange rate, old LCU per USD extended forward, period average",
      "last_update": "2025-11-13"
    },
    {
      "id": 8806,
      "dataset_name": "Stock Markets, US$",
      "last_update": "2025-11-13"
    },
    {
      "id": 10945,
      "dataset_name": "Exports Merchandise, Customs, current US$, millions",
      "last_update": "2025-11-13"
    },
    {
      "id": 10946,
      "dataset_name": "Exports Merchandise, Customs, constant US$, millions",
      "last_update": "2025-11-13"
    },
    {
      "id": 10948,
      "dataset_name": "Exports Merchandise, Customs, current US$, millions, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 10949,
      "dataset_name": "Exports Merchandise, Customs, constant US$, millions, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 10950,
      "dataset_name": "Exports Merchandise, Customs, Price, US$, seas. adj.",
      "last_update": "2025-11-13"
    },
    {
      "id": 11280,
      "dataset_name": "No account because financial institutions are too far away (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11281,
      "dataset_name": "No account because financial institutions are too far away (% without an account, age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11282,
      "dataset_name": "No account because financial services are too expensive (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11283,
      "dataset_name": "No account because financial services are too expensive (% without an account, age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11284,
      "dataset_name": "No account because of a lack of necessary documentation (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11285,
      "dataset_name": "No account because of a lack of trust in financial institutions (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11286,
      "dataset_name": "No account because of a lack of trust in financial institutions (% without an account, age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11287,
      "dataset_name": "No account because of religious reasons (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11288,
      "dataset_name": "No account because of religious reasons (% without an account, age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11289,
      "dataset_name": "No account because of insufficient funds (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11290,
      "dataset_name": "No account because of insufficient funds (% without an account, age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11291,
      "dataset_name": "Saved at a financial institution or using a mobile money account (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11292,
      "dataset_name": "Saved at a financial institution or using a mobile money account, female (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11293,
      "dataset_name": "Saved at a financial institution or using a mobile money account, urban (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11294,
      "dataset_name": "Saved at a financial institution or using a mobile money account, out of labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11295,
      "dataset_name": "Saved at a financial institution or using a mobile money account, in labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11296,
      "dataset_name": "Saved at a financial institution or using a mobile money account, male (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11297,
      "dataset_name": "Saved at a financial institution or using a mobile money account, young (% ages 15-24)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11298,
      "dataset_name": "Saved at a financial institution or using a mobile money account, older (% age 25+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11299,
      "dataset_name": "Saved at a financial institution or using a mobile money account, primary education or less (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11300,
      "dataset_name": "Saved at a financial institution or using a mobile money account, secondary education or more (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11301,
      "dataset_name": "Saved at a financial institution or using a mobile money account, income, poorest 40% (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11302,
      "dataset_name": "Saved at a financial institution or using a mobile money account, income, richest 60% (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11303,
      "dataset_name": "Saved at a financial institution or using a mobile money account, rural (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11304,
      "dataset_name": "Owns a debit card (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11305,
      "dataset_name": "Owns a debit card, female (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11306,
      "dataset_name": "Owns a debit card, urban (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11307,
      "dataset_name": "Owns a debit card, out of labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11308,
      "dataset_name": "Owns a debit card, in labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11309,
      "dataset_name": "Owns a debit card, male (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11310,
      "dataset_name": "Owns a debit card, young (% ages 15-24)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11311,
      "dataset_name": "Owns a debit card, older (% age 25+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11312,
      "dataset_name": "Owns a debit card, primary education or less (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11313,
      "dataset_name": "Owns a debit card, secondary education or more (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11314,
      "dataset_name": "Owns a debit card, income, poorest 40% (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11315,
      "dataset_name": "Owns a debit card, income, richest 60% (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11316,
      "dataset_name": "Owns a debit card, rural (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11317,
      "dataset_name": "Received wages into an account: paid higher than expected fees (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11318,
      "dataset_name": "Deposited money into a financial institution account 2 or more times a month (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 11319,
      "dataset_name": "Deposited money into a financial institution account 2 or more times a month (% who had deposited money, age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 12061,
      "dataset_name": "Foreign Reserves, Months Import Cover, Goods",
      "last_update": "2025-11-13"
    },
    {
      "id": 12062,
      "dataset_name": "Has access to the Internet (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 12070,
      "dataset_name": "Industrial Production, constant US$",
      "last_update": "2025-11-13"
    },
    {
      "id": 13259,
      "dataset_name": "Made a digital merchant payment (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13260,
      "dataset_name": "Made a digital merchant payment, female (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13261,
      "dataset_name": "Made a digital merchant payment, urban (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13262,
      "dataset_name": "Made a digital merchant payment, out of labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13263,
      "dataset_name": "Made a digital merchant payment, in labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13264,
      "dataset_name": "Made a digital merchant payment, male (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13265,
      "dataset_name": "Made a digital merchant payment, young (% ages 15-24)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13266,
      "dataset_name": "Made a digital merchant payment, older (% age 25+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13267,
      "dataset_name": "Made a digital merchant payment, primary education or less (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13268,
      "dataset_name": "Made a digital merchant payment, secondary education or more (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13269,
      "dataset_name": "Made a digital merchant payment, income, poorest 40% (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13270,
      "dataset_name": "Made a digital merchant payment, income, richest 60% (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13271,
      "dataset_name": "Made a digital merchant payment, rural (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13364,
      "dataset_name": "Mobile money account (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13365,
      "dataset_name": "Mobile money account, female (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13366,
      "dataset_name": "Mobile money account, urban (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13367,
      "dataset_name": "Mobile money account, out of labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13368,
      "dataset_name": "Mobile money account, in labor force (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13369,
      "dataset_name": "Mobile money account, male (% age 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13370,
      "dataset_name": "Mobile money account, young (% ages 15-24)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13371,
      "dataset_name": "Mobile money account, older (% age 25+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13372,
      "dataset_name": "Mobile money account, primary education or less (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13373,
      "dataset_name": "Mobile money account, secondary education or more (% ages 15+)",
      "last_update": "2025-10-06"
    },
    {
      "id": 13374,
      "dataset_name": "Mobile money account, income, poorest 40% (% ages 15+)",
      "last_update": "2025-10-06"
    }
  ],
  "pagination": {
    "total": 2990,
    "hasMore": true,
    "limit": 100,
    "offset": 0
  },
  "_note": "Showing 100 of 2990 datasets for Chinese Taipei. Use limit parameter to get more."
}

How to use statistics API for Chinese Taipei

1

Authenticate easily

Secure API keys give you instant access to millions of datasets for Chinese Taipei.

2

Filter by country

Get data for Chinese Taipei and over 150 other countries.

3

Integrate seamlessly

Bring live Chinese Taipei statistics into your apps, dashboards, or workflows in real time.

Key benefits

Save development time

Skip data cleaning — work with ready-to-use Chinese Taipei datasets.

Scale instantly

From one chart to millions of requests, our API grows with your product.

Stay accurate

All Chinese Taipei statistics come from verified, trusted sources.

Be flexible

Build custom apps, dashboards, and workflows with full control over Chinese Taipei data.

Why developers choose Monitly API

99.9%
Uptime for reliable apps
150+
Countries covered with live statistics
5M+
Total datasets ready to query and integrate

Chinese Taipei statistics API for every developer

Startups & companies

Automate reporting and enrich your analytics with live Chinese Taipei data.

Researchers

Query Chinese Taipei datasets and speed up your analysis.

Developers

Embed Chinese Taipei charts, power apps, or build data-driven products.

Agencies

Deliver client dashboards with statistics that update automatically.

Trusted by 25,000+ creators

Discover how Content Writer uses Monitly API to keep articles always fresh with live data.

Content Writer
See Case Study

Frequently Asked Questions

Build smarter with live Chinese Taipei data

No credit card required